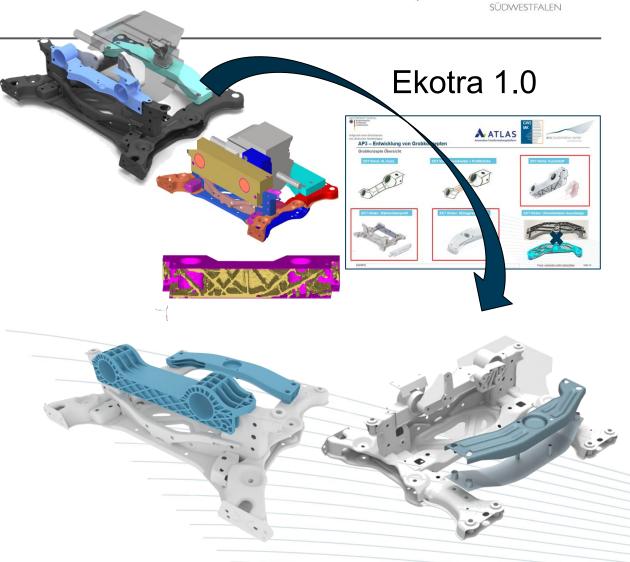


Attendorn 10. Oktober 2025

0004578 M.Sc. Eduard Haberkorn, Dr.-Ing. Stefan Kurtenbach



EKoTra 1.0

Rückblick

Rückblick EKoTra 1.0

- Motivation: Verständnis für das System "E-Komponententräger"
- Ziel: Erarbeitung verschiedener Ansätze hinsichtlich Design, Fertigung und Werkstoff
- Es wurden mehrere Designansätze in Richtung Aluminium, Stahl und Kunststoff betrachtet
- Es wurden ausgewählte Grobkonzepte erarbeitet und auf die Zielwerte des Referenzdesigns ausgelegt
- Neben dem Gesamtverständnis für die Funktion und Anforderungen von EKT konnte zusätzliches Leitbaupotential durch alternative Bauweisen aufgezeigt werden
- Zusätzlich wurde das Potential für adaptive Bauweisen je nach Antriebskonfiguration erkannt

Ford E-Transit Courier

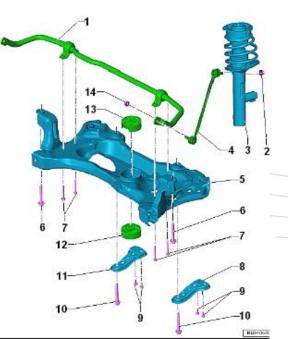
- Plattform deckt unterschiedliche Antriebskonzepte und Fahrzeuge ab:
 - Puma (ICE)
 - Transit Courier (ICE)
 - E-Transit Courier (BEV)
- EKT-> "MegaBrace" Druckguss AlSi7
- Trägt alle E-Komponenten inkl. Motor (>100kg)
- → Oben: Lademodule, 12V-Batterie etc.
- → Unten: Motor / Getriebe
- Erfüllt Steifigkeitsanforderungen
- Stellt Crash-Verhalten der ICE-Variante nach
- → Biegeverhalten Längsträger
- Durchbrüche teilweise zur besseren Belüftung

Zwischenfazit

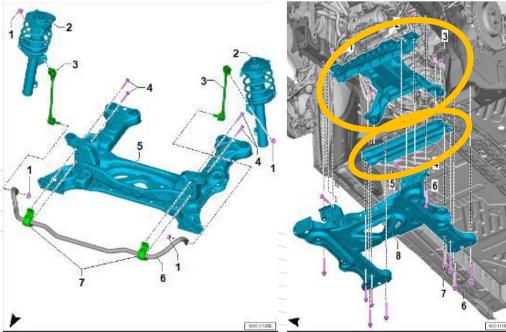
Charakteristische Bauweisen

- Komplexe AL-Gussteile meistens mit integrierten Motorlagern
- Profil-Querträger zwischen den Längsträgern häufig auf der höhe Federbeindome aber ohne intergrierte Motorlager. Meistens U-Profile oder AL-Strangpressprofile.
- Seltener sieht man Kunststoff Komponententräger im Einsatz

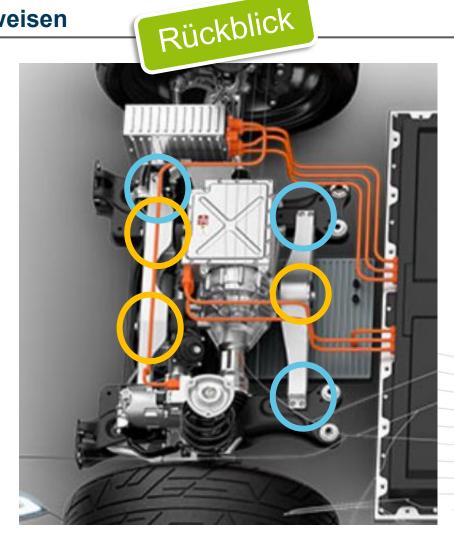
VW MEB-Plattform



Merkmale

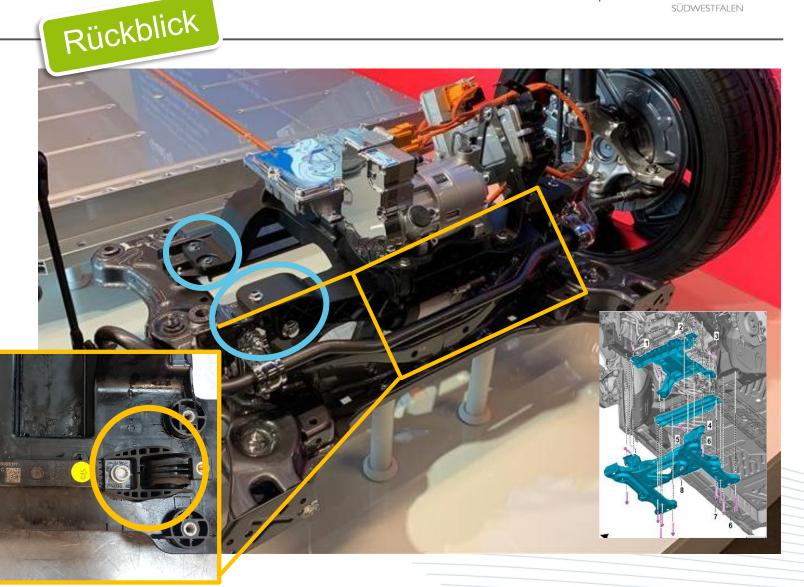

- "Maximale Reichweite" Bauweise
- Hilfsrahmen: geschweißter Stahl
- 3-Punkt-Motor-Getriebelagerung für Allrad- Antrieb

Vorderachse: VW Golf 8


Vorderachse: VW ID.3

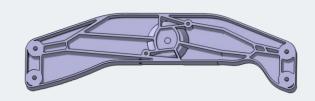
VW MEB

- Angetriebene Heck- und Vorderachse
- 2 einzelne Bauteile vor und hinter den elektrischen Antriebskomponenten: Al-Guss?
- Aufnahme:
 - elektrisches Antriebsmodul Anbindung an Subframe:
 - → gleiche Anbindungsstellen an das Subframe wie bei der nicht angetriebenen Vorderachse
 - → 2 Gummilager vorderseitig, 1 Gummilager hinter dem elektronischen Antriebsmodul



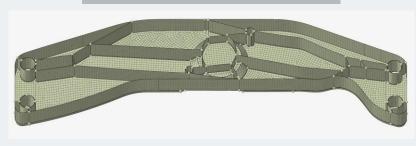
VW MEB

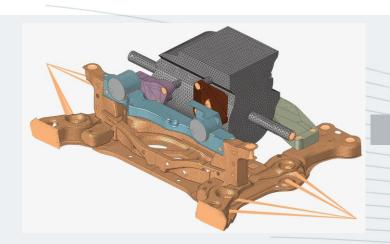
- Nicht angetriebene Vorderachse
- Verripptes Bauteil aus 50% glasfaserverstärktem Polyamid 6: PA-GF50 (PPW Germany, Polytec Group)
- Anbindung an Subframe:
 - → Querträger-Verstärkung
 - → Vordere Anbindung des Subframes an Längsträger
 - → Stirnwand-Querträger
- Aufnahme:
 - elektronische Komponenten (kein E-Antrieb)



Aufbau/Analyse des Referenzmodells Reverse Engineering

Reverse Engineering

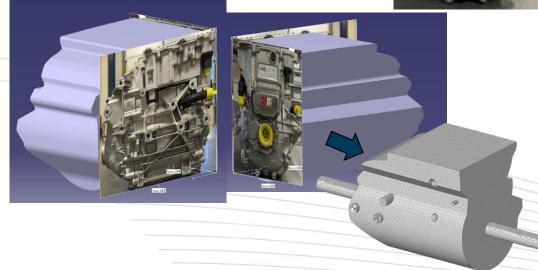



Bauteile

CAD-Rückführung

Bildung von Mittelflächen

Modellaufbau

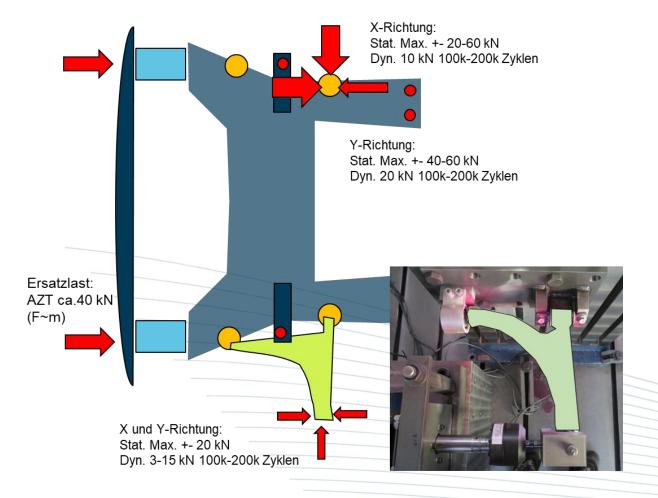

Rückblick

Motorenspezifikation

- Der Motor (+Inverter oben) wurde durch Fotografieren und Ableitung von Fotos im CAD aufgebaut.
- Das Gewicht des Frontmotors (ASM) ist unbekannt. Das Gewicht des Heckmotors
 (PSM) beträgt ca. 80 kg bei deutlich größeren Abmessungen.
- Um das Gewicht n\u00e4herungsweise zu bestimmen, wurde dem CAD-Volumen der Werkstoff Aluminium zugewiesen. Daraus ergibt sich ein Gewicht von 68 kg. F\u00fcr einen Asynchronmotor dieser Gr\u00f6\u00dfe erscheint dieser Wert Plausibel.
- Frontmotor:
 - Gesamtlänge: ~450mm
 - Gesamthöhe inkl. Leistungselektronik: ~330mm
 - Gesamthöhe ohne Leistungselektronik: ~245mm
 - Gesamtbreite inkl. Leistungselektronik: ~295mm
 - Gesamtgewicht: ~68 kg

Laut Recherche: ~60 kg (ohne Inverter?)

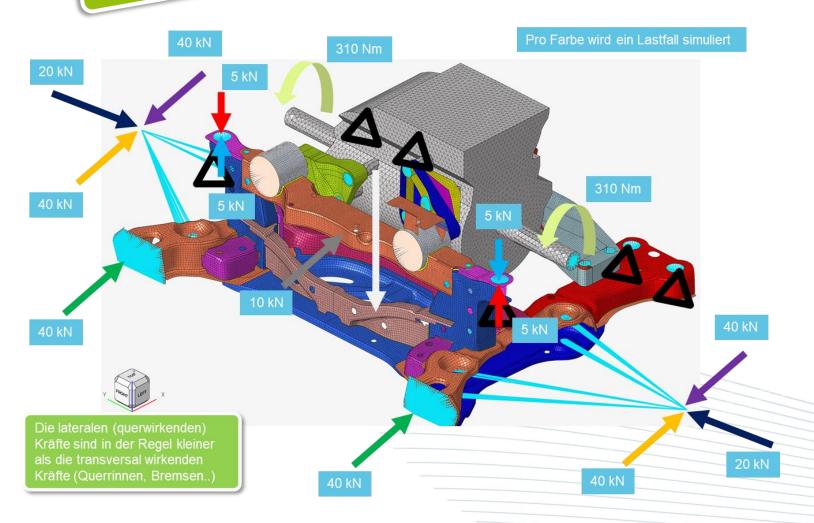
Rückblick


Lastfälle aus bekannten Testanforderungen

Testanforderungen

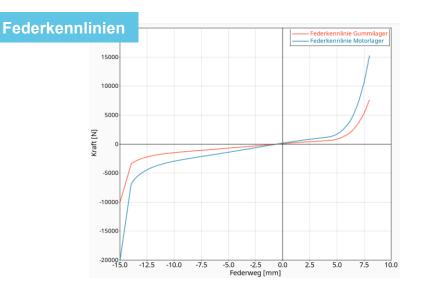
Aus internen Tests und vorliegenden Lastenheften wurden Größenordnungen für die Lasthöhen abgeleitet.

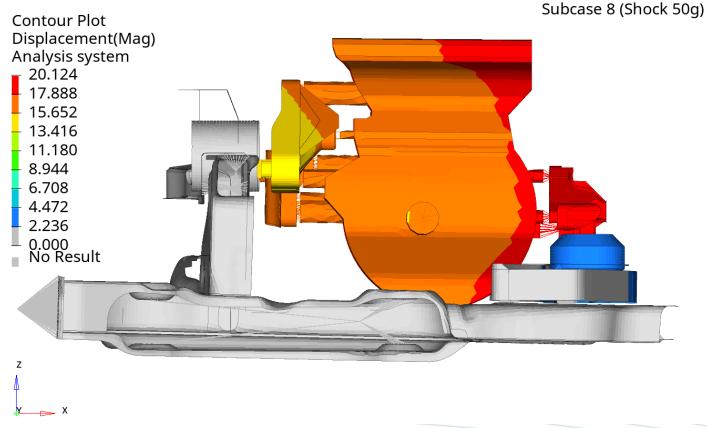
Tendenziell erfolgen die Tests auf Komponentenebene und nicht mit sog. Halbachsen-Konfigurationen. Das bedeutet Querlenker und Subframes werden einzeln getestet.


Bei dem Subframe gibt es weitere Lastfälle abgeleitet aus den Belastungen durch den Stabilisator, die Motor- und Lenkstangenanbindung.

Vernetzung & FE-Modellaufbau

Lastfall	Größe	Zuordnung
Crashlast	40 kN	\rightarrow
Lenker x (pos)	40 kN	\rightarrow
Lenker x (neg)	40kN	\rightarrow
Lenker y (in)	20 kN	\rightarrow
Torsion (pos)	5 kN	
Torsion (neg)	5 kN	\rightarrow
Drehmoment	310 Nm	
Shock	50g	
Modalanalyse	0 bis 1000 Hz	-
Crashlast Pole	10 kN	\rightarrow

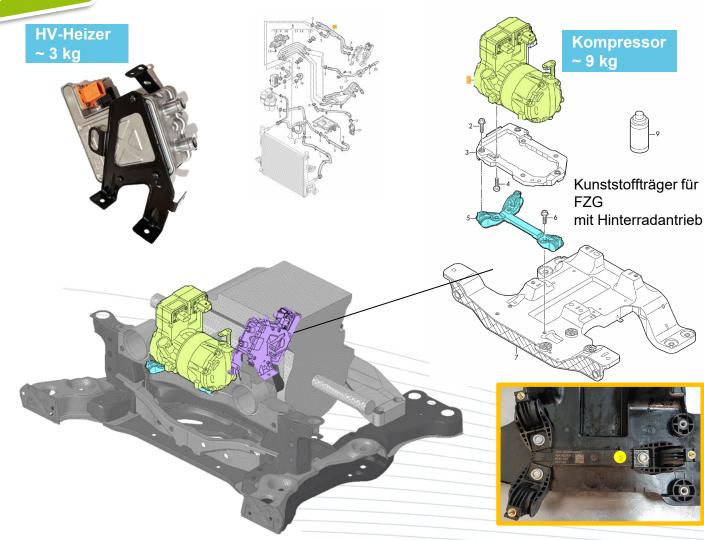

Rückblick



Rückblick

Shock 50g- Quasi-Statisch

- Die gemessene Motorverschiebung dient als Zielwert für nachfolgende Topologieoptimierungen.
- Die Berechnung wurde mit nicht-linearen Materialien und Motorlagerungen realisiert.

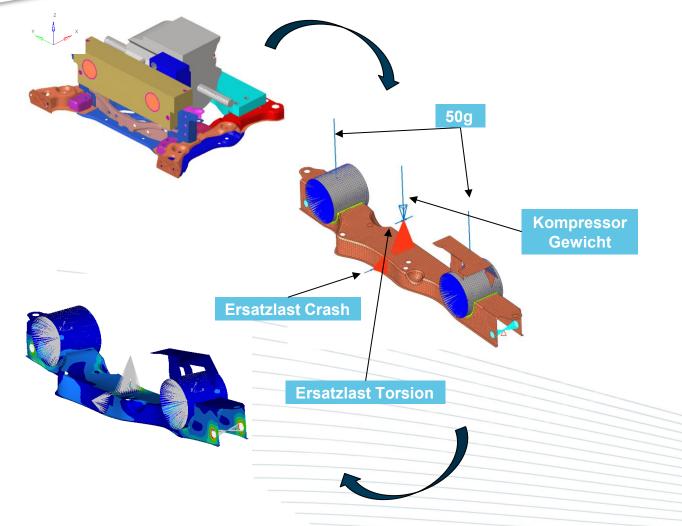

Entwicklung von Grobkonzepten

Rückblick

Vorderer EKT

Integration zusätzlicher Anforderungen:

- Aufnahmepunkte für Kompressor und Wärmepumpe am vorderen Querträger.
- → Kompressor nur indirekt über Kunststoffelement mit EKT verbunden. Daher eher geringer Widerstand im Crash bis auf Block mit Motor
- Anpassung der Optimierung, um auch seitliche Kräfte bei Bremsung und Low-Speed-Crashs abzudecken.
- Schockbelastungen durch Beschleunigungen von bis zu 50 G bei Bordsteinüberfahrt -> ca. 4500 N
- Anpassung der Struktur zur Aufnahme dieser Kräfte, insbesondere für mittig platzierte Bauteile wie den Kompressor.
- Kunststoff-Ekomponententräger für Fahrzeuge mit Hinterradantrieb bereits im Einsatz


Entwicklung von Grobkonzepten

Rückblick

Steifigkeitsanalyse: Modellaufbau

- Reduzierung der Optimierung auf Bauteilebene
 - isoliert auf den front Querträger
 - Vereinfachte Annahmen, wie festgelagerte äußere Anschraubpunkte
- Analyse des Referenzbauteils zur Bestimmung der Zielwerte für die Topologieoptimierung
- Ansatz mit Kunsthof material: PA-GF(35%)
- Lastfälle: 50g Shock

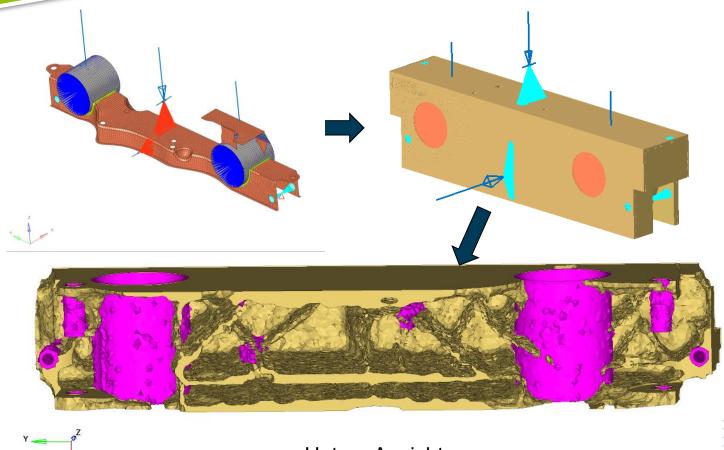
Kompressor Gewicht 9 kg Ersatzlastfall Crash 10 kN Ersatzlastfall Torsion 1 kN

Entwicklung von Grobkonzepten

Rückblick

Topologie Optimierung

Ziel: Minimales Gewicht

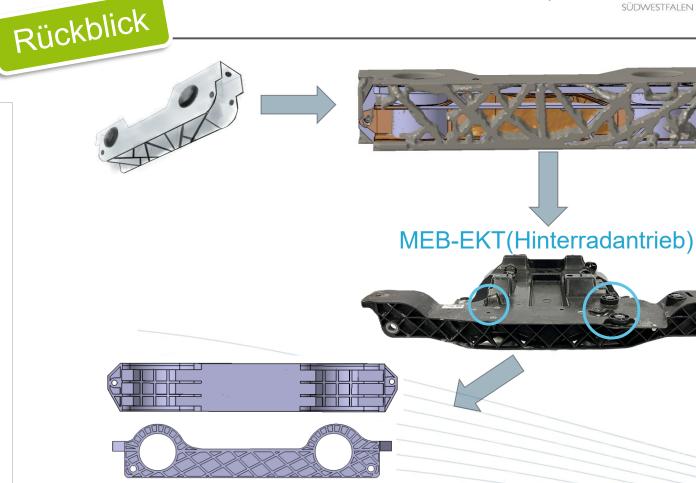

Bedingungen: Einhaltung der definierten Deformationsgrenzen

Fertigungsrestriktionen: Entformung-Z + geschlossene

Oberfläche

Lastfälle: Vertikale Belastung + Torsion + Crash

- Die Optimierungs-Bedingungen wurden etwas stärker als in der initialen Steifigkeitsanalyse definiert: Sie berücksichtigen den Sicherheitsfaktor und ermöglichen eine eindeutigere Struktur
- Die initiale Topologieoptimierung zeigte eine Kunststoffschale mit Rippenstrukturen
- Anpassung: Die Schale (ca. 4 mm) wurde als Non-Design definiert, um die Lastpfade zu identifizieren und Designmöglichkeiten zu ermitteln.



Ausarbeitung der Konzepte

EKT Vorne: Kunststoff

Designansatz

- Erster Ansatz für den Kunstsoff-EKT
 - Rippenstruktur aus Topologieoptimierung
 - Erweiterter Bauraum
 - Spritzgießverfahren mit einer Entformungsrichtung
 - Wandstärkerestriktionen
- Zweiter Ansatz und Erkenntnisse
 - Inspiration aus dem original MEB-EKT der Variante Hinterradantrieb
 - → Mehrere Entformungsrichtungen
 - → Anbindung E-Komponenten (Metallhülsen, Gewindebuchsen…)
 - → PA6-GF50
 - Berücksichtigung von Fertigungsrestriktionen in Spritzgussprozess
 - Versteifung der Lageraugen durch umlaufende Rippen

Zusammenfassung & Erkenntnisse

Finale Konzepte

Kunststoffträger

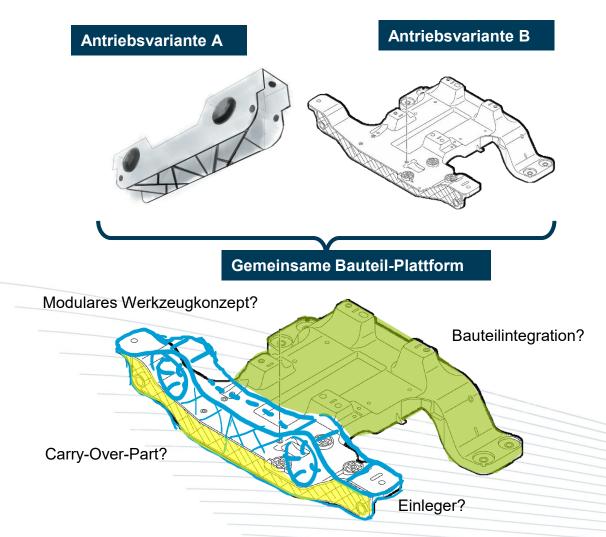
2,54 kg (-18,3%)

Alu-Strangpressprofil

2,32 kg (-22%)

Rückblick

3,38 kg (+13%)

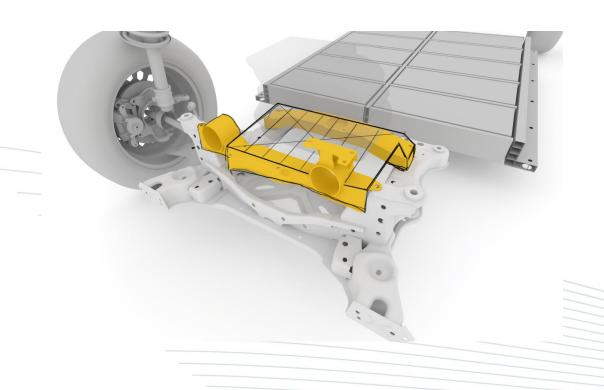


Anschlussprojekt EKoTra-Flex

Skizze

Anschlussprojekt EKoTra-Flex

- Motivation: Im abgeschlossenen Projekt EKoTra wurden alternative Konzepte, Fertigungstechnologien und Werkstoffe für E-Komponententräger im Vorderwagen untersucht
- Dabei wurde deutlich, dass je nach Antriebsvariante (z.B. Heck- oder Allradantrieb) unterschiedliche EKT eingesetzt werden, was Entwicklungs- und Produktionsaufwand erhöht
- Dieses Folgeprojekt zielt darauf ab, das Potential für intelligente, modulare Konzepte zu entwickeln, die Gleichteile nutzen und adaptive Fertigungstechnologien verwenden
- Aktuelle Fertigungskonzepte für Gesamtfahrzeuge folgen verstärkt dem Unboxed-Ansatz, hierbei nehmen komplettierte Komponententrägermodule eine zentrale Aufgabe ein
- ➤ So lassen sich Synergien realisieren, die Kosten, Materialeinsatz und CO₂-Emissionen optimieren.



Projektziel und Nutzen

Ziel des Projekts: Entwicklung und Auslegung von E-Komponententrägersystemen mit einem innovativen Plattformansatz zur Abdeckung verschiedener Antriebsvarianten.

Nutzen und Ergebnis

- Ausblick auf mögliche Lösungsstrategien zukünftiger EKT-Systeme
 - z.B. adaptive Fertigungsstrategien, enges Zusammenspiel aus Entwicklung, Konstruktion und Fertigung
- Berücksichtigung aktueller Gesamtfahrzeug-Fertigungskonzepte (Unboxed-Ansatz)
- Überblick der Lösungen im aktuellen Wettbewerbsumfeld
- Neue, innovative Lösungsmöglichkeiten über die bereits bekannten Lösungen hinaus
- Regelmäßige Diskussionen und Austausch im Expertenkreis
- Gemeinsame Gestaltung von ausgewählten Projektinhalten

Arbeitspakete

AP1: Recherche und Marktanalyse

- Ergänzende Technologierecherche zu den Ergebnissen aus EKoTra
- Fokus:
 - EKT-Plattformen für verschiedene Antriebsvarianten
 - o Integration von E-Komponenten in Batterie und E-Motor → Integral-VS Differentialbauweise
 - Ansatz von Carry-Over-Parts aus anderen Baugruppen

AP2: Konzeptentwicklung

- Ggfs. Ergänzung des Lastenheftes
- Konzeptentwicklung mit Fokus auf adaptives Baugruppendesign: Carry-Over-Parts für mehrere Antriebsvarianten
- Berücksichtigung der Schnittstellen zum Subframe und Aggregate
- Mechanische Bauteilauslegung mit Hilfe von FEM-Simulationen
- Potentielle Fertigungstechnologien: AL-Guss, Schalenbauweise, Kunststoff-Spritzguss

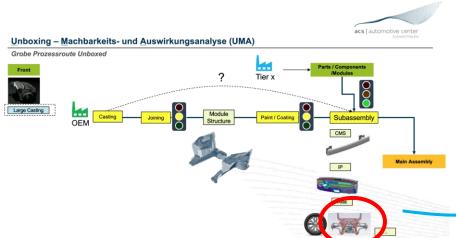
AP3: Wirtschaftlichkeitsanalyse

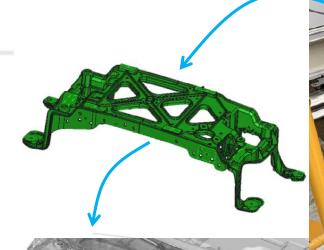
- Erarbeitung von Produktions-/ Fertigungsprozessen
- Wirtschaftlichkeitsbetrachtung und Gegenüberstellung der verschiedenen Konzepte

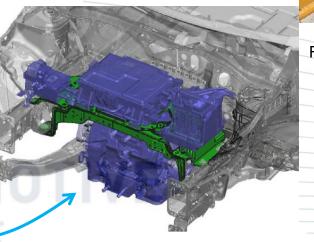
AP1

AP1: Recherche und Marktanalyse

- Ergänzende Technologierecherche zu den Ergebnissen aus EKoTra
- Fokus:
 - EKT-Plattformen für verschiedene Antriebsvarianten
 - o Integration von E-Komponenten in Batterie und E-Motor → Integral-VS Differentialbauweise
 - Ansatz von Carry-Over-Parts aus anderen Baugruppen

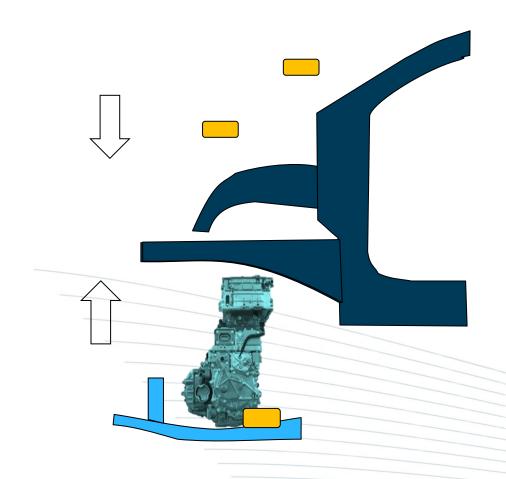

MEB inkl. Konzeptansätze




AP1

AP1: Recherche und Marktanalyse

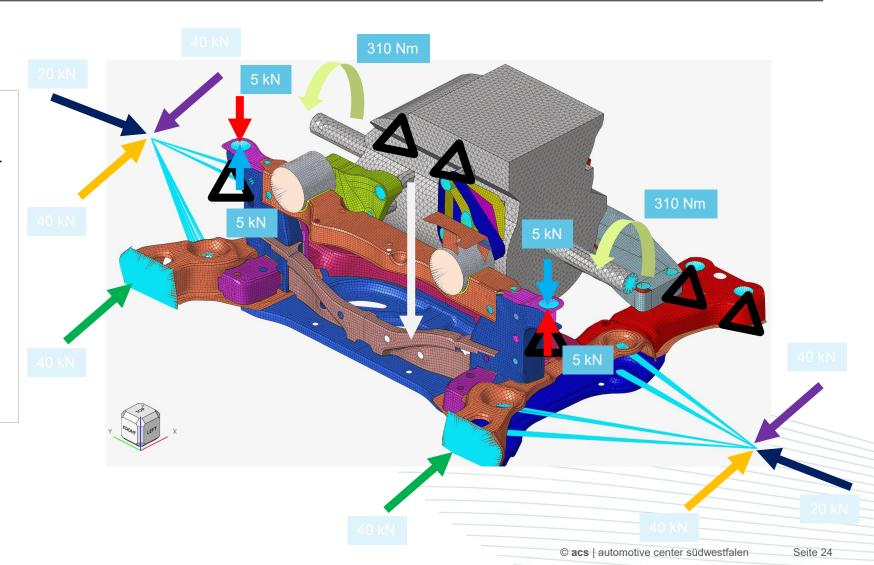
- Möglichkeiten und Anforderungen für Unboxed-Fertigungsstrategien
 - effizientes Design der Modulträger für verschiedene Antriebskonzepte
 - Fertigung der Strukturbaugrupppe
 - Assembly des Untermoduls mit Anbauteilen (wie Kompressor, Elektronikbauteilen, Lenkung, ...)
 - ⇒ Montage der komplettierten Unterbaugruppe in das Modul "Vorderwagen" für den Unboxed-Prozess


Ford Transit E-Courier

AP1

AP1: Recherche und Marktanalyse

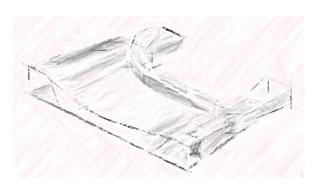
- Ergänzende Technologierecherche zu den Ergebnissen aus EKoTra
- Fokus:
 - EKT-Plattformen für verschiedene Antriebsvarianten
 - o Integration von E-Komponenten in Batterie und E-Motor → Integral-VS Differentialbauweise
 - Ansatz von Carry-Over-Parts aus anderen Baugruppen



AP2

AP2: Konzeptentwicklung

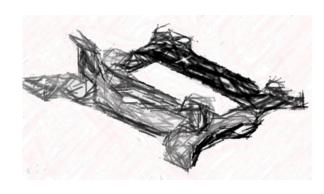
- Ggfs. Ergänzung des Lastenheftes
- Konzeptentwicklung mit Fokus auf adaptives Baugruppendesign: Carry-Over-Parts für mehrere Antriebsvarianten
- Berücksichtigung der Schnittstellen zum Subframe und Aggregate
- Mechanische Bauteilauslegung mit Hilfe von FEM-Simulationen
- Potentielle Fertigungstechnologien: AL-Guss, Schalenbauweise, Kunststoff-Spritzguss



AP2

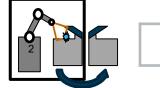

AP2: Konzeptentwicklung

- Ggfs. Ergänzung des Lastenheftes
- Konzeptentwicklung mit Fokus auf adaptives Baugruppendesign: Carry-Over-Parts für mehrere Antriebsvarianten
- Berücksichtigung der Schnittstellen zum Subframe und Aggregate
- Mechanische Bauteilauslegung mit Hilfe von FEM-Simulationen
- Potentielle Fertigungstechnologien: AL-Guss, Schalenbauweise, Kunststoff-Spritzguss

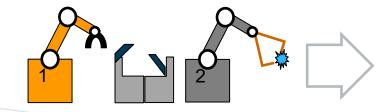

Stahl-Schalen- und Rohrkonzept

Stahl-Schale - Optimiert

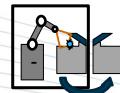
Vollguss

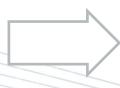


Arbeitspakete


AP3: Wirtschaftlichkeitsanalyse

- Erarbeitung von Produktions-/ Fertigungsprozessen
- Wirtschaftlichkeitsbetrachtung und Gegenüberstellung der verschiedenen Konzepte





Arbeitspakete

AP3: Wirtschaftlichkeitsanalyse

- Erarbeitung von Produktions-/ Fertigungsprozessen
- Wirtschaftlichkeitsbetrachtung und Gegenüberstellung der verschiedenen Konzepte

Werkstoff	
Masse	
Dicke	
Anzahl pro ZSB	
Teilezahl	
Prozess	
Materialausnutzung	%
Material preis	€/kg
Schrottpreis	€/lg
Materialkosten gesamt	€
Schrottkosten	€
Materialkosten	€

Hubzahl	Teile/min
Teile pro Hub	-
Abschätzung Presskraft	t
Anlage	
Maschinenstundensatz inkl. Fertigungslohn	€/h
Formplatine	
Maschinenstundensatz Laserbeschnitt	€/h
Trennlänge	
Fertigungskosten Beschnitt	€/Teil
Fertigungseinzelkosten	€/Teil
Fertigungsgemeinkosten (pauschal 4% d. FEK)	€/Teil

Schweißvorrichtung	€
Auswahl Handlingroboter	
Anzahl Handlingroboter	
Stundensatz Handlingroboter	€/h
Bestückung	
Teile pro Konsole	
Fügemethode	
Fügestellen pro ZSB	
Anzahl Fügeroboter	
Dauer pro Aufspannung	S
Dauer pro Aufspannung	h
Maschinenstundensatz inkl. Fertigungslohn	€/h
Fertigungskosten pro ZSB	€
Werkzeugkosten pro ZSB	€
Assemblykosten	€/ZSB

Baugruppenkosten	€	111,00	100%
Material		57,72	52%
FEK		6,66	6%
FGK		0,00	0%
SEF		18,87	17%
Assembly		27,75	25%

Organisatorisches und Zeitplanung

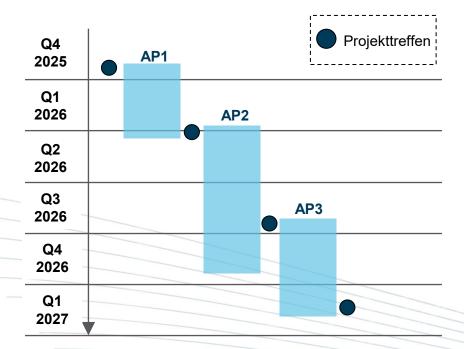
Organisation

■ Projektbeginn: Q4/2025

Projektlaufzeit: 12 Monate

■ Projektkosten: EUR 9.900

Anmerkungen:


Im Rahmen des Projektes gelten die allgemeinen Geschäftsbedingungen der Automotive Center Südwestfalen GmbH sowie ggfs. zusätzliche Projektvereinbarungen.

Die Projektkosten sind jährlich im Voraus zu entrichten; Reisekosten sind nicht inkludiert.

Unternehmensspezifische Projekterweiterungen und individuelle Analysen sind möglich.

Eine Mindestteilnehmerzahl ist für das Projekt vorgesehen

Eine Teilnahme ist auch nach Projektbeginn durch Entrichtung der vollständigen Projektkosten möglich.

